

 Von Neumann
◦ traditional CPUs

 Systolic arrays

 SIMD architectures
◦ for example, Intel’s SSE, MMX

 Vector processors

 Stream processors
◦ GPUs are a form of these

 Classic form of programmable processor
 Creates Von-Neumann bottleneck

◦ separation of memory and ALU creates bandwidth
problems

◦ today’s ALUs are much faster than today’s data links
◦ this limits compute-intensive applications
◦ cache management to overcome slow data links adds to

control overhead

 Systolic Arrays
◦ arrange computational units in a specific

topology (ring, line)

◦ data flow from one unit to the next

 SIMD (Same Instruction Multiple Data)

◦ a single set of instructions is executed by different

processors in a collection

◦ multiple data streams are presented to each

processing unit

◦ SSE, MMX is a 4-way SIMD, but still requires
instruction decode for each word

 Vector processors
◦ made popular by Cray

supercomputers
◦ represent data as a vector
◦ load vector with a single

instruction (amortizes
instruction decode
overhead)

◦ exposes data parallelism
by operating on large
aggregates of data

 In VLSI technology, computing is cheap
◦ thousands of arithmetic logic units operating at

multiple GHz can fit on 1cm2 die

 But… delivering instructions and data to
these is expensive

 Example:
◦ only 6.5% of the Itanium die is devoted to its 12

integer and 2 floating point ALUs and their registers
◦ remainder is used for communication, control, and

storage

 Thus, general-purpose use of CPUs comes at
a price

 In contrast:
◦ the more efficient control and communication on

the Nvidia GeForce4 enables the use of many
hundreds of floating-point and integer ALUs

◦ for the special purpose of rendering 3D images

◦ this task exposes abundant parallelism

◦ requires little global communication and storage

 Goal:
◦ expose these patterns of communication, control,

and parallelism to a wider class of applications
◦ Create a general purpose streaming architecture

without compromising its advantages

 Proposed streaming architectures
◦ Imagine (Stanford)
◦ CHEOPS

 Existing implementations that come close
◦ Nvidia FX, ATI Radeon GPUs
◦ enable GP-GPU (general purpose streaming, GP-

GPU)

 Organize an application into streams and
kernels
◦ expose inherent locality and concurrency (here,

of media-processing applications)

 This creates the programming model for
stream processors
◦ and therefore also for GPGPU

 Local register files (LRFs)
◦ operands for arithmetic operations (similar to

caches on CPUs)
◦ exploit fine-grain locality

 Stream register files (SRFs)
◦ capture coarse-grain locality
◦ efficiently transfer data to and

from the LRFs

 Off-chip memory
◦ store global data
◦ only use when necessary

 These form a bandwidth hierarchy as well
◦ roughly an order of magnitude for each level

◦ well matched by today’s VLSI technology

 By exploiting the locality of media operations
the hundreds of ALUs can operate at peak
rate

 While CPUs and DSPs rely on global storage
and communication, stream processors get
more “bang” out of a die

Stream-C program

MPEG-2 video encoder

MPEG-2 I-frame encoder

Q: Quantization, IQ: Inverse Quantization, DCT: Discrete Cosine Transform

Global communication (from RAM) needed for the reference frames

(needed to ensure persistent information)

 Instruction-level
◦ exploit parallelism in the scalar operations within a

kernel
◦ for example, gen_L_blocks, gen_C_blocks can occur in

parallel

 Data-level
◦ operate on several data items within a stream in

parallel
◦ for example, different blocks can be converted

simultaneously
◦ note, however, that this gives up the benefits that

come with sequential processing (see later)

 Task parallelism
◦ must obey dependencies in the stream graph
◦ for example, the two DCTQ kernels could run in

parallel

 Stream elements
◦ points (vertex stage)

◦ fragments, essentially pixels (fragment stage)

 Kernels
◦ vertex and fragment shaders

 Memory
◦ texture memory (SRFs)

◦ not-exposed LRF, if at all

◦ bandwidth to RAM better, with PCI-Express

 Data parallelism
◦ fragments and points are processed in parallel

 Task parallelism
◦ fragment and vertex shaders can work in parallel

◦ data trabsfer from RAM can be overlapped with

computation

 Instruction parallelism
◦ see task-parallelism

 Stream processors allow looping and jumping
◦ not possible on GPUs (at least not straighforward)

 Stream processors follow a Turing machine
◦ GPUs are restricted (see above)

 Stream processors have much more memory
◦ GPUs have 256 MB, soon 512 MB

 GPUs are not 100% stream processors, but
they come close
◦ and one can actually buy them, cheaply

 Loss of jumps and loops enforces pipeline
discipline

 Lack of memory allows use of small caches
and prevents swamping the chip with data

 Data parallism often requires task
decomposition into multiple passes (see later)

 U. Kapasi, S. Rixner, W. Dally et al.
“Programmable stream processors,” IEEE
Computer August 2003

 S.Venkatasubramanian, “The graphics card as a

stream computer,“ SIGMOD DIMACS, 2003

