Stream Processing/
Computing



Computing Architectures

» Von Neumann
> traditional CPUs

» Systolic arrays

» SIMD architectures
- for example, Intel’s SSE, MMX

» Vector processors

» Stream processors
- GPUs are a form of these




Von Neumann

CPU Main Memory

ALU Cache Instructions

\—/ Data

» Classic form of programmable processor

» Creates Von-Neumann bottleneck
- separation of memory and ALU creates bandwidth

problems
- today’s ALUs are much faster than today’s data links
> this limits compute-intensive applications
- cache management to overcome slow data links adds to
ontrol overhead




Early Streamers

» Systolic Arrays

> arrange computational units in a specific
topology (ring, line)
- data flow from one unit to the next

» SIMD (Same Instruction Multiple Data)

° a set of instructions is executed by different
processors in a collection
0 data streams are presented to each

processing unit

- SSE, MMX is a 4-way SIMD, but still requires
Instruction decode for each word




Early Streamers

» Vector processors

- made popular by Cray
supercomputers

o represent data as a vector

- load vector with a single
instruction (amortizes
instruction decode
overhead)

- exposes data parallelism
by operating on large
aggregates of data

Main Memory

it

J

Address Generation Unit

tt

|
|

Vector Reglsters

b ot 3

¥ ¥V v 3

X-bar

—

Output Reglisters




Stream Processors - Motivation

» In VLSI technology, computing is cheap
- thousands of arithmetic logic units operating at
multiple GHz can fit on 1cm? die
» But... delivering instructions and data to
these is expensive

» Example:

- only 6.5% of the Itanium die is devoted to its
and their registers
- remainder is used for communication, control, and
storage




Stream Processors — Motivation

» Thus, general-purpose use of CPUs comes at
a price
» In contrast:

> the more efficient control and communication on
the Nvidia GeForce4 enables the use of

- for the special purpose of rendering 3D images
> this task exposes abundant parallelism
> requires little global communication and storage




Stream Processors - Motivation

» Goal:

> expose these patterns of communication, control,
and parallelism to a wider class of applications

- Create a general purpose streaming architecture
without compromising its advantages
» Proposed streaming architectures

- Imagine (Stanford)
- CHEOPS

» Existing implementations that come close

- Nvidia FX, ATlI Radeon GPUs

0 %?Dzblgle GP-GPU (general purpose streaming, GP-




Stream Processing

—_— Kernel — -

Data

Kernel — -

» Organize an application into streams and
kernels
- expose inherent locality and concurrency (here,
of media-processing applications)
» This creates the programming model for
stream processors
> and therefore also for GPGPU




Stream Proc. - Memory Hierarchy

» Local register files (LRFs)

- operands for arithmetic operations (similar to
caches on CPUs)

- exploit fine-grain locality
» Stream register files (SRFs)
- capture coarse-grain locality

- efficiently transfer data to ai ﬁw”caﬂm
Processor

from the LRFs
» Off-chip memory ::]Kml |
o store gIObaI data execution unit
Stream [iﬂra;'M

- only use when necessary register
o Other

file
® stream
* clients

DRAM




Stream Proc. - Memory Hierarchy

» These form a bandwidth hierarchy as well
- roughly an order of magnitude for each level
- well matched by today’s VLSI technology

» By exploiting the locality of media operations
the hundreds of ALUs can operate at peak
rate

» While CPUs and DSPs rely on global storage
and communication, stream processors get
more “bang” out of a die




Stream Processing - Example 1

(a)

Input_Image

Convert

;fﬁﬁile ( ! Input_Image.end() ) { Luminance

MPEG-2 video encoder

/{ input next macroblock

in = Input_Image.pop();

ooofm]

=)p)|[d

// generate Luminance and

// Chrominance blocke
out¥[0..3]= gen_ I _blocke(in):

out2[0..1]= gen C_blocks(in); Chrominance

/{ output new blocke
Luminance.pusgh (out¥[0..23]);

struct MACROBLOCKE {
gtruct RGB_pizel |
byte r.g.b;
}
RGB_pixel pixels[16][16];
}

Chrominance.push(outC[0..1]);
N

gtream <MACROBLOCE> gstruct BLOCE |

1

byte intensity[8][8]:

gtream <BLOCKE?

(b)

stream <MACROBLOCK» Input_Image (NUM_MB);
stream <BLOCK? Luminance (NUM_MB*4), Chrominance (NUM_ME*2),

Input_Image = Video_ Feed.get macroblocks(currposg, NUM MB);

currpog += NUM _MEB;

Convert (Input_Image, Luminance, Chrominance);

Stream-C program




Stream Processing - Example 2

~, Stream Sealar
. Kernel ’ —> [ Luminance
\ ' reference

Luminance

Input_Image / /Variable-

: Convert ' -le " lenath Cumpressed
frames l Chrominance ) ¢ :3:Jd'ii]ng bitstream

Video

Chrominance
reference

MPEG-2 I-frame encoder

Q: Quantization, IQ: Inverse Quantization, DCT: Discrete Cosine Transform




Stream Processing - Parallelism

» Instruction-level

0 ﬁxploilt parallelism in the scalar operations within a
erne

- for example, gen_L_blocks, gen_C_blocks can occur in
parallel
» Data-level

- operate on several data items within a stream in
parallel

- for example, different blocks can be converted
simultaneously

> note, however, that this gives up the benefits that
come with sequential processing (see later)
» Task parallelism
> must obey dependencies in the stream graph

- for example, the two DCTQ kernels could run in
parallel




Stream Processors vs. GPUs

» Stream elements

> points (vertex stage)

- fragments, essentially pixels (fragment stage)
» Kernels

> vertex and fragment shaders
» Memory

o texture memory (SRFs)

> not-exposed LRF, if at all
> pbandwidth to RAM better, with PCI-Express




Stream Processors vs. GPUs

» Data parallelism
- fragments and points are processed in parallel

» Task parallelism
- fragment and vertex shaders can work in parallel

- data trabsfer from RAM can be overlapped with
computation

» Instruction parallelism
> see task-parallelism




Stream Processors vs. GPUs

» Stream processors allow looping and jumping
- not possible on GPUs (at least not straighforward)

» Stream processors follow a Turing machine
- GPUs are restricted (see above)

» Stream processors have much more memory
- GPUs have 256 MB, soon 512 MB




Conclusions

» GPUs are not 100% stream processors, but
they come close

- and one can actually buy them, cheaply

» Loss of jumps and loops enforces pipeline
discipline

» Lack of memory allows use of small caches
and prevents swamping the chip with data

» Data parallism often requires task
decomposition into multiple passes (see later)




References

» U. Kapasi, S. Rixner, W. Dally et al.
“Programmable stream processors,” IEEE
Computer August 2003

» S.Venkatasubramanian, “The graphics card as a
stream computer,” SIGMOD DIMACS, 2003




